A note on convolution operators on Riesz Bounded variation spaces

نویسندگان

چکیده

We show some estimates and approximation results of operators convolution type de?ned on Riesz Bounded variation spaces in Rn. also state embedding that involve the collection generalized absolutely continuous functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on certain convolution operators

In this note we consider a certain class of convolution operators acting on the Lp spaces of the one dimensional torus. We prove that the identity minus such an operator is nicely invertible on the subspace of functions with mean zero. 2010 Mathematics Subject Classification. Primary 47G10; Secondary 47B34, 26D10.

متن کامل

Compact operators on Banach spaces: Fredholm-Riesz

1. Compact operators on Banach spaces 2. Appendix: total boundedness and Arzela-Ascoli [Fredholm 1900/1903] treated compact operators as limiting cases of finite-rank operators. [1] [Riesz 1917] defined and made direct use of the compactness condition, more apt for Banach spaces. See [Riesz-Nagy 1952] for extensive discussion in the Hilbert-space situation, and many references to original paper...

متن کامل

Convolution Operators and Bochner-Riesz Means on Herz-Type Hardy Spaces in the Dunkl Setting

The classical theory of Hardy spaces on n has received an important impetus from the work of Fefferman and Stein, Lu and Yang 1, 2 . Their work resulted in many applications involving sharp estimates for convolution and multiplier operators. By using the technique of Herz-type Hardy spaces for the Dunkl operator Λα, we are attempting in this paper to study the Dunkl convolution operators, andwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones

سال: 2021

ISSN: ['0716-0917', '0717-6279']

DOI: https://doi.org/10.22199/issn.0717-6279-4357